

# A Study of *W*-Band Subharmonically Pumped Mixer

WANG YUN-YI AND SHU YONG-HUI

**Abstract**—A *W*-band subharmonically pumped mixer with packaged Schottky diodes has been developed. The design and performance of this mixer are described in detail. A new method for measuring the embedding network parameters of the subharmonically pumped mixer has been developed and the measurement has been carried out directly at  $2f_{LO}$  and  $2f_{LO} \pm f_s$ . A special program for the analysis of the subharmonically pumped mixer has been developed, and computed results are given in comparison with measured results.

## I. INTRODUCTION

THE KEY PROBLEM of accurate analysis and the design of a mixer is to determine the parameters of the embedding network. Since this network usually consists of complex circuits, it is difficult to determine its parameters through theoretical analysis. It has been proved that measurement is an applicable method. However, because of difficulties of measurement at the millimeter-wave band, most measurements were made with only a low-frequency scaling model and for only a single diode mixer [1], [2].

We have developed a *W*-band subharmonically pumped mixer with packaged Schottky diodes. The performance of this mixer, including conversion loss, noise ratio, and input VSWR in relation to LO power and/or frequency, has been measured. A new method for measuring parameters of the embedding network of the mixer has been developed and the measurements have been carried out directly at  $2f_{LO}$  and  $2f_{LO} \pm f_s$ . From these measured parameters of the embedding network, the performances of the mixer have been computed with an analysis program of the subharmonically pumped mixer. Comparison between computed and measured results shows good agreement.

## II. DESIGN AND PERFORMANCES OF THE MIXER

As we have known, the subharmonically pumped mixer is attractive in the millimeter-wave band, especially at or above *W*-band, because it is more difficult to get a LO source with sufficient power at a very high frequency. In addition, the subharmonically pumped mixer has its inherent features and its performance is comparable with the fundamental pumped mixer. Therefore, the subharmonically pumped mixer in the short millimeter-wave band has been developed rapidly in recent years.

Manuscript received March 6, 1985; revised July 1, 1985.

The authors are with the Radio Engineering Department, Nanjing Institute of Technology, Nanjing, Jiangsu, China.

The inherent advantages of the subharmonically pumped mixer can be summarized as follows:

- a) no currents of  $\omega_{LO} \pm \omega_s$  appear in the external circuit, so the noise caused by a LO source can be suppressed;
- b) the conversion loss can be reduced;
- c) the dc current flows only through the loop formed by the two diodes, so there is no need to consider the dc return in the circuit design;
- d) since two diodes form a loop, they can prevent breakdown caused by backward voltage from each other.

### A. Design of the Mixer

The configuration of the *W*-band subharmonically pumped mixer is shown in Fig. 1.

1) *Diode*: Because of the lack of beam lead diodes and substrate material suitable for the millimeter-wave band, we have to use packaged Schottky diodes. They are provided by the Nanjing Solid State Device Research Institute and the parameters are listed in Table I.

2) *LO Low-Pass Filter*: In general, suspended microstrip line is applicable for the design of millimeter-wave band filters. But, as explained above, since the packaged coaxial diodes have been applied, the best configuration of a LO low-pass filter should be coaxial. It is designed with a Chebyshev response and includes five stages. The radius of the outer and inner conductors of the coaxial line should be designed in accordance with following conditions:

$$a + b \leq \lambda_{min} / \pi$$

and

$$b/a \doteq 3.5.$$

Finally, the dimensions of the coaxial low-pass filter are determined as shown in Fig. 2. The radius of the outer conductor of the coaxial line is 1.33 mm.

3) *Backshort*: Two backshorts are required for tuning in the *W*- and *Q*-bands. A perfect backshort is particularly important for the signal port because the loss of signal caused by a backshort will directly affect the conversion loss of the mixer. Brewer and Räisänen [3] have developed a noncontacting backshort based on the principle of the low-pass filter. According to this principle, a *W*-band

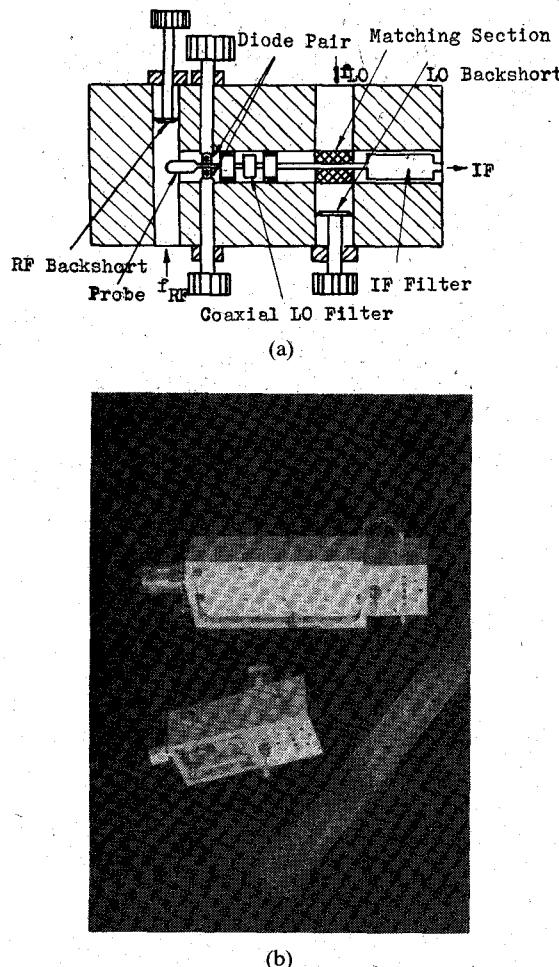



Fig. 1. Configuration of *W*-band subharmonically pumped mixer.  
(a) Configuration. (b) Photograph.

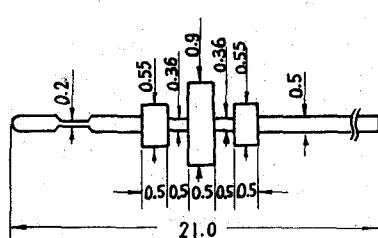



Fig. 2. Inner conductor of filter.

TABLE I  
PARAMETERS OF THE DIODE

| Para. | $R_s$<br>(ohm) | $L_s$<br>(nH) | $C_p$<br>(pF) | $C_j$<br>(pF) | $V_B$<br>(V) | $I_s$<br>(A)       | $\phi$<br>(V) |
|-------|----------------|---------------|---------------|---------------|--------------|--------------------|---------------|
|       | 5.0            | 0.1           | 0.2-          | 0.4           | 7-8          | $5 \times 10^{-9}$ | 0.75          |

backshort used for the subharmonically pumped mixer was designed and is shown in Fig. 3.

### B. Performance of the Mixer

The performance of the *W*-band subharmonically pumped mixer, including conversion loss, noise ratio, and

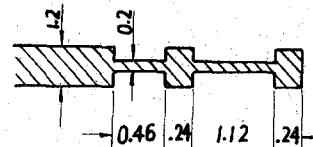



Fig. 3. *W*-band backshort.

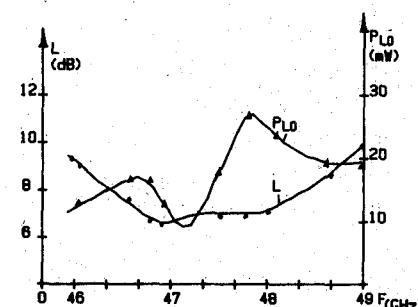



Fig. 4. Frequency response of the *W*-band subharmonically pumped mixer.

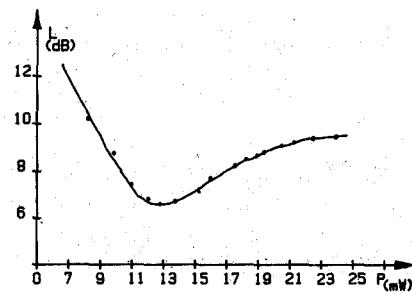



Fig. 5. Conversion loss versus LO power.

TABLE II  
OPERATING FREQUENCIES AND PERFORMANCE OF THE MIXER

| Mixer Para. | $f_{LO}$<br>(GHz) | $f_{IF}$<br>(GHz) | $L_c$ (DSB)<br>(dB) | $t_m$<br>( $\times 290K$ ) | input VSWR | $P_{LO}$<br>(mW) |
|-------------|-------------------|-------------------|---------------------|----------------------------|------------|------------------|
|             | 46.84             | 1.2               | 6.35                | 321.9                      | 1.2        | 8-15             |

input VSWR, has been measured and listed in Table II. The conversion loss of the mixer in relation to frequency, LO power, and the backshort position of the signal port are shown in Figs. 4-6, respectively.

### III. MEASUREMENT OF THE EMBEDDING NETWORK PARAMETERS

In order to analyze and design the mixer accurately, it is necessary to determine the parameters of the embedding network. In the past, most measurements of the embedding network parameters were made with a low-frequency scaling model and only for a single-diode mixer. Unfortunately, it is very difficult to realize the low-frequency scaling model for the subharmonically pumped mixer. Therefore, we have to develop a new method for measuring the parameters of the embedding network.

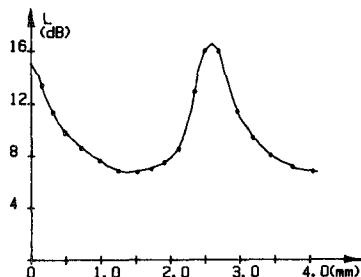



Fig. 6. Conversion loss of mixer is measured in relation to the position of the backshort of the signal port.

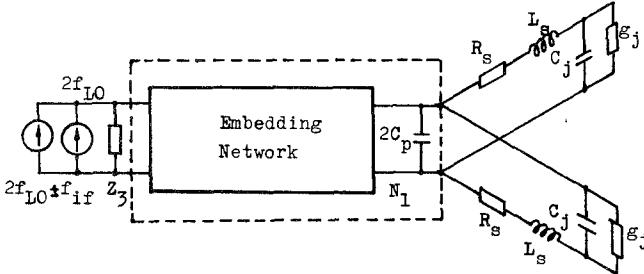



Fig. 7. The equivalent circuit of the subharmonically pumped mixer.

#### A. Principle

Fig. 7 shows the equivalent circuit of the mixer. The embedding network includes the total circuit except the diodes. We put the package capacitance  $2C_p$  of the two diodes with the embedding network together and form a two-port network  $N_1$ . If the parameters of network  $N_1$  are known, the impedance seen from the junction of the diodes can be determined. Then the nonlinear and linear analyses of the mixer are possible to be carried out. In order to measure the parameters of network  $N_1$ , we take one adequately biased diode put in place as a variable reactive load of the two-port network  $N$  (see Fig. 8). At the same time, another diode is put in place but its junction is broken. Thus, the equivalent circuit for the measurement is shown as Fig. 8.

The biasing voltage of the diode taken as a variable reactive load of network  $N$  is changed from  $-5$  V to  $0.5$  V and divided into 13 intervals in this range. Since the current through the diode is very small if the biasing voltage is less than  $0.5$  V, the junction conductance of diode can be neglected. The relationship between the input reflection coefficient  $\Gamma_{in}$  and the load reflection coefficient  $\Gamma_c$  of network  $N$  is given by

$$\Gamma_{in} = S_{11} + \frac{S_{12}^2 \Gamma_c}{1 - S_{22} \Gamma_c}. \quad (1)$$

With a variable biasing voltage, the reflection coefficient  $\Gamma_c$  caused by the junction capacitance  $C_j$  changes along the unit circle. The mapping of the  $\Gamma_c$  circle, the track of measured  $\Gamma_{in}$ , is also a circle. Three important points should be found for the determination of the network parameters (shown in Fig. 9).

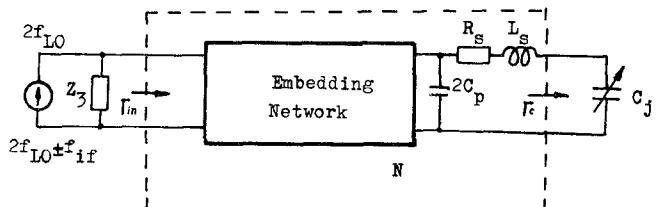



Fig. 8. The equivalent circuit for measurement.

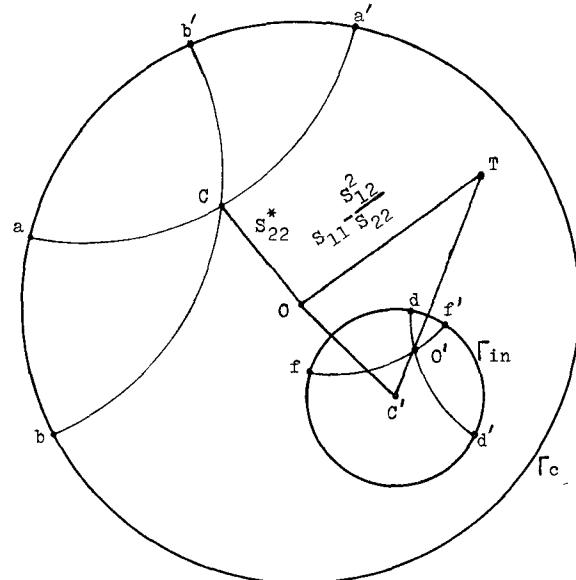



Fig. 9. The relation between locations of points  $O'$ ,  $C$ , and  $T$  and the scattering parameters.

1)  $O'$ , the partial center of the  $\Gamma_{in}$  circle and the mapping of center  $O$  of  $\Gamma_c$  circle. Since  $\Gamma_c = 0$  at point  $O$ , therefore

$$S_{11} = \overline{OO'}. \quad (2)$$

2)  $T$ , the symmetric point of  $O'$  in relation to the  $\Gamma_{in}$  circle. In accordance with theorem of the symmetric point invariance,  $\Gamma_c$  corresponding to point  $T$  must be symmetric with  $O$  in relation to the  $\Gamma_c$  circle, i.e., the mapping of  $T$  is  $\Gamma_c = \infty$ . From the substitution of  $\Gamma_c = \infty$  in (1), the relationship is given by

$$S_{11} - \frac{S_{12}^2}{S_{22}} = \overline{OT}. \quad (3)$$

3)  $C$ , the mapping of center  $C'$  of the  $\Gamma_{in}$  circle. The symmetric point of  $C'$  in relation to the  $\Gamma_{in}$  circle is  $\Gamma_{in} = \infty$ . The mapping of  $\Gamma_{in} = \infty$  is  $\Gamma_c = 1/S_{22}$ . Thus, the symmetric point of  $\Gamma_c = 1/S_{22}$  in relation to the  $\Gamma_c$  circle is

$$S_{22}^* = \overline{OC}. \quad (4)$$

The radius of the  $\Gamma_{in}$  circle can be calculated from the scattering parameters of the network. That is

$$R = \frac{|S_{12}|^2}{1 - |S_{22}|^2}. \quad (5)$$

Now, the problem which remains to be solved is how to



Fig. 10. Perspective centers and  $AB$  line determined from conformal transformation circles.

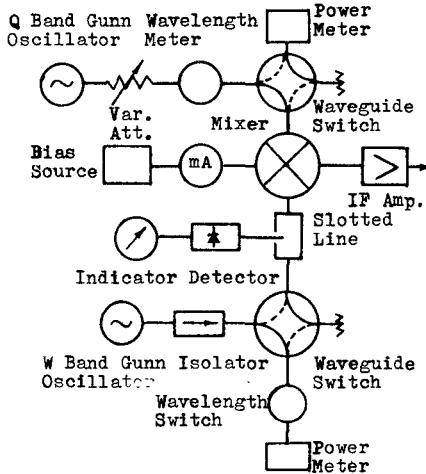



Fig. 11. Block diagram of the experimental system for the measurement of the embedding network parameters.

find three points  $O'$ ,  $T$ , and  $C$  from the measured  $\Gamma_{in}$  circle.

Equation (1) is a linear fractional conformal transformation. In accordance with the theorem of a four-point cross ratio [4], if we have known  $\Gamma_{in1}$ ,  $\Gamma_{in2}$ , and  $\Gamma_{in3}$  corresponding to  $\Gamma_{c1}$ ,  $\Gamma_{c2}$ , and  $\Gamma_{c3}$ , respectively, then  $\Gamma_{in}$  is related to  $\Gamma_c$  by

$$\frac{\Gamma_c - \Gamma_{c1}}{\Gamma_c - \Gamma_{c2}} \frac{\Gamma_{c3} - \Gamma_{c2}}{\Gamma_{c3} - \Gamma_{c1}} = \frac{\Gamma_{in} - \Gamma_{in1}}{\Gamma_{in} - \Gamma_{in2}} \frac{\Gamma_{in3} - \Gamma_{in2}}{\Gamma_{in3} - \Gamma_{in1}}. \quad (6)$$

The mapping of the  $\Gamma_c$  circle (or a straight line) in the  $\Gamma_{in}$  plane must be a circle (or a straight line). If  $\Gamma_{c1}$  and  $\Gamma_{in1}$  are connected and the cross points of the  $\Gamma_{c1}\Gamma_{in1}$  line with the  $\Gamma_c$  and  $\Gamma_{in}$  circles are  $P_1$  and  $P_2$  (known as perspective centers, see Fig. 10), respectively; thus, the cross points  $S_1$ ,  $S_2$ , and  $S_3$  of lines  $P_1\Gamma_{c1}$ ,  $P_1\Gamma_{c2}$ , and  $P_1\Gamma_{c3}$  with  $P_2\Gamma_{in1}$ ,  $P_2\Gamma_{in2}$ , and  $P_2\Gamma_{in3}$  must lie on the same line  $AB$ . With line  $AB$  and perspective centers  $P_1$  and  $P_2$ ,  $\Gamma_{in}$  corresponding to given  $\Gamma_c$  can be found through a graphic method. It is the same the other way around. That is, connecting  $P_1$  and given  $\Gamma_c$ , if the  $P_1\Gamma_c$  line crosses the  $AB$  line at point  $S$ , the cross point of the  $P_2S$  line with the  $\Gamma_{in}$  circle is just  $\Gamma_{in}$  corresponding to given  $\Gamma_c$ .

Based on the principle described above, a graphic method for determination of the scattering parameters of the network from the measured  $\Gamma_{in}$  circle has been developed [5].

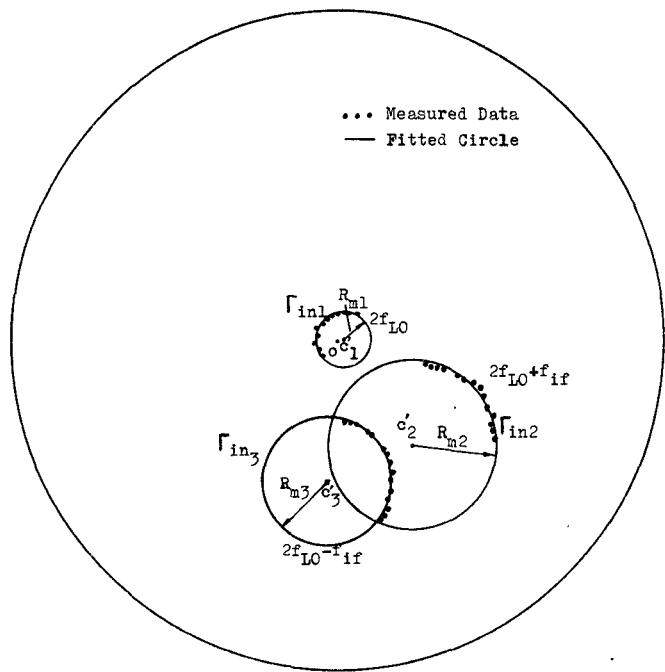



Fig. 12. The measured  $\Gamma_{in}$  circles at three frequencies.

Here it is used for determination of the embedding network parameters of a subharmonically pumped mixer.

Fig. 9 shows how to find three points  $O'$ ,  $T$ , and  $C$  from the  $\Gamma_c$  and  $\Gamma_{in}$  circles. At first, two diameters of the  $\Gamma_{in}$  circle are drawn (not shown in Fig. 9), then their mappings, i.e.,  $aa'$  and  $bb'$ , can be determined with the graphic method introduced above. The cross point  $C$  of  $aa'$  and  $bb'$  inside the  $\Gamma_c$  circle is the mapping of point  $C'$ . Similarly, partial center  $O'$  can be determined from the cross point of  $ff'$  and  $dd'$  inside the  $\Gamma_{in}$  circle, and point  $T$  is the cross point of  $ff'$  and  $dd'$  outside the  $\Gamma_{in}$  circle.

### B. Procedure of the Measurement

At first, the subharmonically pumped mixer is adjusted with LO power and two backshorts to reach a minimum conversion loss, but no bias is applied. Then one of the diodes is replaced by a diode which has the same package but whose junction has been broken. Another diode is biased in the reverse direction and the biasing voltage is changed gradually from  $-5$  V to  $0.5$  V. A  $W$ -band VSWR test system is connected to the signal port of the mixer. The block diagram of the experimental system for measuring the embedding network parameters is shown in Fig. 11. For a given biasing voltage  $C$ , of the diode and  $\Gamma_c$  can be calculated and the input reflection coefficient  $\Gamma_{in}$  is measured.

### C. Results of the Measurement

Fig. 12 shows the measured  $\Gamma_{in}$  circles corresponding to frequencies  $2f_{LO}$  and  $2f_{LO} \pm f_{if}$ . The measured scattering parameters of network  $N$  are listed in Table III. The radius  $R_m$  is obtained directly from the measured  $\Gamma_{in}$  circle and  $R_c$  is obtained from calculation with (5).

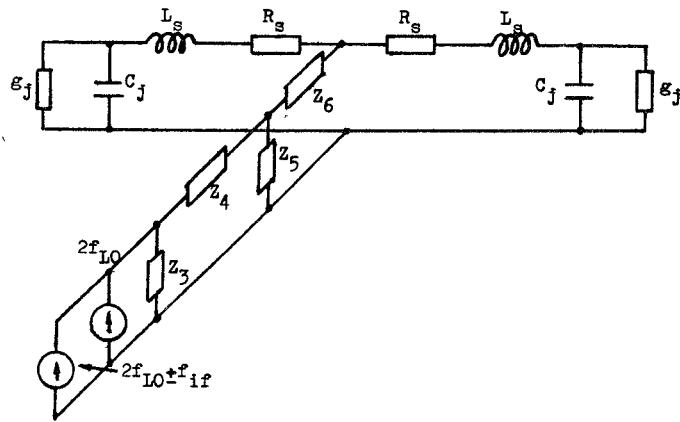



Fig. 13. The equivalent circuit for the analysis of the subharmonically pumped mixer.

TABLE III  
MEASURED SCATTERING PARAMETERS

| Para. | Fre.               | $S_{11}$             | $S_{12}$             | $S_{22}$            | $R_m$ | $R_c$ |
|-------|--------------------|----------------------|----------------------|---------------------|-------|-------|
|       | $2f_{LO}$          | $0.023 \angle -90.5$ | $0.254 \angle 61.04$ | $0.534 \angle 51.0$ | 0.087 | 0.090 |
|       | $2f_{LO} + f_{if}$ | $0.328 \angle -35.0$ | $0.459 \angle -46.3$ | $0.415 \angle 5.0$  | 0.262 | 0.254 |
|       | $2f_{LO} - f_{if}$ | $0.356 \angle -95.5$ | $0.412 \angle -40.3$ | $0.345 \angle 4.2$  | 0.200 | 0.192 |

TABLE IV  
EMBEDDING IMPEDANCES

| Fre.        | $f_{if}, f_{LO}$ | $f_{LO} \pm f_{if}$ | $2f_{LO} - f_{if}$   | $2f_{LO}$            | $2f_{LO} + f_{if}$  | $2f_{LO} + f_{if}$ | above |
|-------------|------------------|---------------------|----------------------|----------------------|---------------------|--------------------|-------|
| Impt.       |                  |                     |                      |                      |                     |                    |       |
| $Z_6$ (ohm) | 50.0             |                     | $80.1 \angle 69.7$   | $195.3 \angle -88.2$ | $168.0 \angle 76.7$ |                    | 0.0   |
| $Z_5$ (ohm) | 50.0             |                     | $169.2 \angle -69.9$ | $267.8 \angle -79.7$ | $157.4 \angle 78.1$ |                    | 0.0   |
| $Z_4$ (ohm) | 50.0             |                     | $227.3 \angle 11.3$  | $154.2 \angle 36.2$  | $349.6 \angle -27$  |                    | 0.0   |

TABLE V  
MEASURED AND COMPUTED RESULTS

|                       |                      |                          |
|-----------------------|----------------------|--------------------------|
| Conversion Loss (DSB) | Measured<br>Computed | 6.35 (dB)<br>7.24 (dB)   |
| LO Power              | Measured<br>Computed | 13.50 (mW)<br>22.80 (mW) |

Since  $R_s$  and  $L_s$  of the diode have been given, the parameters of network  $N_1$  can be determined.

This method of measurement can also be used to measure the embedding network parameters at other LO harmonics and sideband frequencies. Moreover, it can also be used to measure the embedding network parameters of other microwave active circuits.

#### IV. PROGRAM AND COMPUTED RESULTS

A special program has been developed for the nonlinear and linear analyses of the subharmonically pumped mixer. The nonlinear analysis is based on multi-reflection techniques [6]. The equivalent circuit for analysis is shown in

Fig. 13. The impedances  $Z_4$ ,  $Z_5$ , and  $Z_6$  are obtained from the scattering parameters we have measured at  $2f_{LO}$  and  $2f_{LO} \pm f_{if}$ .  $Z_3$  is the source impedance. The embedding impedances at other LO harmonics and sideband frequencies are given. They are listed in Table IV. The computed results with an analysis program are listed in Table V and compared with measured results.

The discrepancy between the measured and computed results is caused by a) the error of measurement of conversion loss and embedding impedances and b) the error of the embedding impedances at other LO harmonics and sidebands which are given but not measured since the instruments are limited.

## V. CONCLUSIONS

1) A *W*-band subharmonically pumped mixer has been developed with packaged Schottky diodes. The advantages of this mixer are its reliability and the convenience of installing and changing diodes.

2) A new method for measuring the embedding network parameters of the subharmonically pumped mixer has been developed and measurement has been carried out directly at *W*-band.

3) A special program for the analysis of the subharmonically pumped mixer has been developed and used for the computation of mixer performance from measured network parameters.

## ACKNOWLEDGMENT

The authors are very grateful to Prof. Sun Zhong-liang for his help with *W*-band and *Q*-band Gunn oscillators, and Wang Min-qi of Nanjing Solid State Device Research Institute for her help with diodes. They also thank Xu Zhi-cai of Zi Jing Mountain Observatory for his help with mixer performance measurements.

## REFERENCES

- [1] D. N. Held and A. R. Kerr, "Conversion loss and noise of microwave and millimeterwave mixers. Part 2—Experiment," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-26, pp. 55–61, Feb. 1978.
- [2] P. H. Siegel and A. R. Kerr, "A comparison of the measured and theoretical performance of a 140–220 GHz Schottky diode mixer," in *IEEE MTT-S Dig.*, 1984, pp. 549–551.
- [3] M. K. Brewer and A. V. Räisänen, "Dual-harmonic noncontacting millimeter waveguide backshorts: Theory, Design, and Test," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-30, pp. 708–714, May 1982.
- [4] A. Weissflock, *Теория цепей и техника измерений в дециметровом и сантиметровом диапазонах*, 1961.
- [5] Li Si-fan and Ni Kou-quan, "A graphical method for determination of scattering coefficients of a two-port, linear, reciprocal microwave network," *Acta Electronica Sinica*, no. 1, pp. 57–66, Mar. 1965.
- [6] A. R. Kerr, "Noise and loss in balanced and subharmonically pumped mixers: Part 2—Applications," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-27, pp. 944–950, Dec. 1979.

\*

Wang Yun-ji was born in Jiangsu Province, China. She graduated from the Radio Engineering Department of Nanjing Institute of Technology in 1961 and became a Teaching Assistant, Lecturer, and Associate Professor at NIT in 1962, 1978, and 1983, respectively.

From 1961 to 1966, her teaching and research interests included microwave components, surface-wave transmission lines, microwave measurements, and microwave tunnel-diode amplifiers. From 1973 to the present, her main interest has been microwave solid-state devices and circuits, especially millimeter-wave mixers. In addition, she has also been working on the theoretical research and design of broad-band matching networks in recent years.

\*



Shu Yong-hui was born in Jiangsu Province, China, on March 23, 1957. He received the B.S. and M.S. degrees in radio engineering from Nanjing Institute of Technology in 1982 and 1985, respectively.

His interests are microwave and millimeter-wave components and circuits. He is now a faculty member of the Radio Engineering Department of NIT working on millimeter-wave mixers.